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Wave-power absorption by an oscillating water column in a channel is studied within 
linear theory, and for different boundary conditions regarding the regions between 
the absorber and the channel walls. Particular attention is given to the effect of 
placing projecting sidewalls in front of the column. 

1. Introduction 
The oscillating water column is one of several promising devices for absorption of 

energy from ocean waves. One of the earlier theoretical studies of oscillating water 
columns is that by Evans (1978), and other relevant calculations have been 
performed, e.g. by Falcgo & Sarmento (1980) and Evans (1982~). We also mention 
the papers on resonant ducts by Lighthill (1979), Simon (1981) and Thomas (1981). 

Later, the present authors and their collaborators (Ambli et al. 1982) presented the 
idea of improving the performance of an oscillating water column by the addition 
of two projecting sidewalls. For the sake of brevity, at the same time we coined the 
name ' harbour ' for the area between these sidewalls, although its purpose is of course 
the opposite of that of an ordinary harbour. The effect of harbours in connection with 
this and other wave-power devices has subsequently also been studied by Evans 
(1982b) and Count & Evans (1984). 

In the present paper our ideas concerning oscillating water columns with harbours 
are elaborated in more detail. For now we limit ourselves to the case of one absorber 
symmetrically placed in a channel, or, equivalently, an infinite row of identical and 
equidistant absorbers subjected to normally incident waves. 

2. The absorbing system 
We consider an idealized system for wave-power absorption as shown in figure 1. 

The pressure chamber has length a, width b and height H above the water surface, 
and is separated from a harbour of length 1 by an infinitely thin barrier of depth d. 
The harbour has the same width b as the chamber, and the system is placed 
symmetrically in a channel of width c.  The water depth h is taken to be constant. 

The regions at  the sides and back of the absorber are either accessible to the channel 
waves or made inaccessible by a reflecting wall or an absorbing beach at  the level 
of the harbour mouth. 
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FIGURE 1.  Oscillating water column with harbour. 

The air turbine connected with the pressure chamber is assumed to be linear, i.e. 
the amplitude of the air flow is presumed proportional to the amplitude of the 
chamber pressure. The phases of these quantities need not, however, necessarily 
coincide. 

3. Generalities 
We are here concerned with harmonic wave motion a t  a given angular frequency 

w, and described by a complex velocity potential &x, y,  z ,  t )  = #(x, y, z )  exp (iwt). It 
has been shown by Evans (1982a)  that in order to calculate the power absorbed by 
a system such as that in figure 1 within linear theory and for a given amplitude of 
the incoming wave we need just three pieces of information about the system: 
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(1) the volume flux through the surface of the chamber when the latter is open, 
i.e. without the roof and turbine, and the system is exposed to  an incoming wave; 
(2) the admittance of the system, which is a measure of the volume flux through the 
chamber surface caused by an imposed harmonic chamber pressure; (3) the turbine 
constant, i.e. the volume flux of air through the turbine divided by the driving 
pressure. 

We find i t  convenient to work with the mean wave amplitudes in the chamber 
rather than the corresponding volume fluxes. If an incoming wave with amplitude 
qo produces a wave fc(z,  y, t )  = qc(x, y )  exp (iwt) in the chamber we then define the 
ratio 

Ec = <VC(", Y ) > / V o  

= (q,ab)-' j O  dz dYTc(", y ) ,  (3.1) 
-U -4b 

and use the notation 5, for the value of 5, when the chamber is open. 
If, in the absence of an incoming wave, the chamber is subjected to an  imposed 

excess pressure p,(t) = p ,  exp (iwt) causing a chamber wave qc(z, y) exp (iwt), the 
admittance 2 of the system is defined by the equation 

where A, = ab is the surface area of the chamber, g is the acceleration due to gravity, 
p is the water density, and qp = p,/gp is the wave-amplitude equivalent of the 
pressure amplitude p,. When convenient, we separate the admittance into its real 
and imaginary parts by writing 2 = B+ iwA. 

I n  an actual working situation the system is subjected to an  incoming wave with 
amplitude q,, and the resulting wave amplitude q&, y )  and the excess-pressure 
amplitude p ,  in the chamber depend on the turbine constant C,. I n  large-scale 
wave-power plants air compressibility will have a noticeable effect on the performance. 
In  this respect, i t  is shown in Appendix A that, in a first approximation consistent 
with linear wave theory, the compressibility of air can be taken into account by the 
introduction of an effective turbine constant A = C, + iwA, where A = Vc/~pa .  Here 
V, = A, H is the chamber volume, p a  is the atmospheric pressure, and K = 1.4 on the 
assumption of adiabaticity. 

The amplitude ratio 6, and pressure ratio n, = pc/qo can then be expressed in 
terms of to, 2 and A by the equations 

(3.3) 

The pressure ratio in a closed chamber (C, = 0) is thus n, = iwA,f;,(Z+iwd)-l. 
Note, furthermore, that  owing to  the air compressibility an infinitely large chamber 
(A -+ co) is equivalent to an  open chamber (C,+ 00) of finite size; in both cases Ec-+Eo 
and n,-+O. 

Writing the mean power absorbed by the system as PIqo12, we can express the 
power ratio as 

p = ~A,[(iwt,)*",+n~(iwEc)l, 

= ?jRe(A)In,12. (3.4) 

ti P L Y  158 
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Another useful measure of the performance of the system is the capture width w, 
where 

w = P / J ,  

f(kh) = [ I +  sinh . 2kh 2kh ]tanhkh,J 

in which k is the wavenumber and JI r ] ,  l 2  is the power per unit width in the incident 
wave. Equivalent dimensionless quantities are the capture-width ratio 

W = w/b (3.6) 

and, for an absorber in a channel, the efficiency 

E = w/c. (3.7) 

For a given system geometry and wave frequency the turbine constant Ct can be used 
to optimize the absorbed power. I n  terms of W, the optimum situation corresponds 
to  a value 

(3.8) 

which occurs for A = Z*, implying a phase lag between the flux through the turbine 
and the driving pressure. If no such phase lag is present, i.e. if the turbine constant 
Ct is real, we obtain an optimum capture-width ratio Wk,, by choosing C, equal to 
C,,, where 

(3.9) 

c, = [B2 + w2(A + 4 2 1 : .  J 
We note that W,,, and W;,, coincide a t  frequencies for which A + d  = 0. 

4. Wave amplitude 
I n  the present chapter we address the problem of calculating the quantity 6,. I n  

other words, we consider the situation where the system in figure 1 is subjected to 
an incident wave rji(z, t )  = qi(z) exp (iwt) travelling towards the open end of the 
absorber, where yi(z) = r] ,  exp (ikz'), and calculate the corresponding average wave 
amplitude in the open chamber. 

The velocity potential in the various regions of the system can be expressed in terms 
of the eigenmodes consistent with the boundary conditions on the solid walls and on 
the surface and the bottom of the sea. Using the indices q and n to  denote transverse 
modes (y-dependence) and vertical modes (z-dependence) respectively, we can write 
the velocity potential q5 and wave amplitude r] in the front region 1 as 
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where 

In principle, the summation indices q and n range from zero to infinity, and the 
coefficients alnq are as yet unknown. Furthermore, 

We refer to Appendix B regarding the definitions of the eigenfunctions en(z)  and 
eigenvalues mn for the z-dependence; note, in particular, that mo = ik and en(0) = 1. 
We emphasize that a reflected-wave component r]&) = r] ,  alOO exp (-ikz') is con- 
tained in (4.2). 

Considering for the time being the case where the side regions between the absorber 
and the channel walls are accessible, we can, similarly, write the contribution from 
the mode n to the wave amplitude in the back region 3 as 

z " = z f + r = z + a ,  r = a + l ,  I 
where the transmitted wave is qSt(z) = r],, aso0 exp (ikz"). The side regions 2 contain 
waves travelling both up and down the channel, and the relevant width parameter 
is there c' = c - b. Thus 

Wq(Y)  = cos{27cq[ I Y I -9I l c ' ) ,  I 
where the expressions for enq are obtained from those for vnq by a substitution of 
c' for c .  

We now turn our attention to the internal regions of the absorber. Looking again 
a t  an arbitrary z-mode n,  we can write the wave amplitude in the chamber region 
as 

(4.6) 

where we obtain ynq from the expressions for vnq by substituting b for c, and where 
the z-dependence of the wave amplitude (4.6) follows from the boundary condition 
a$/az = 0 at the back wall (2" = 0). Also, in the harbour region we are concerned with 
a linear combination of waves along the positive and negative z-axes. We note, 
however, that at = 0 the derivative a$/az should be the same on both sides of the 

1 Tcn(z9 Y )  = T O  anq cash (Ynq 2") vq(Y), 
Q 

V J Y )  = cos (2?7Ylb), 

6-2 
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barrier (in particular,aq5/ax = 0 for -d < z < 0). The harbour wave amplitude can 
then be written as 

~ H ~ ( x , Y )  = 7 0  X [an, coshyngx”+bng coshynqxIvg(~), (4.7) 

where the coefficients bn, define the difference in wave amplitude between the two 
sides of the barrier. 

We note a t  this point that  only the coefficients a,, enter explicitly into the 
expression for the mean chamber amplitude, 

9 

However, the various unknown coefficients that  we have introduced are interrelated 
through the matching conditions for the velocity potential and its derivative with 
respect to x at the boundaries between the various regions. For example, a t  the barrier 
the chamber and harbour potentials q5c and #H, which for x = 0 already fulfil the 
condition a$,/ax = a&/ax a t  any y and z ,  should satisfy the requirements 
a$,/ax = 0 for -d  < z < 0 and $H = 9, for - h  < z < d.  In  integrated form this 
gives a set of linear equations for the coefficients an, and bnq; these equations couple 
the various vertical modes n but not the transverse modes q. 

At present, however, we find it more instructive to consider the limiting case of 
zero barrier depth, i.e. the case where the potentials in the harbour and open chamber 
are described by the same expression, corresponding to bn, = 0 in (4.7). We shall 
return to the influence of the barrier depth in $7.  

For d = 0 the only vertical mode that is present in the system is n = 0, since the 
incident wave contains just this mode, and all solid walls extend down to the sea bed. 
For purposes of the subsequent admittance calculation it is nevertheless convenient 
to pretend not to know this off-hand and derive linear equations for the coefficients 
in any mode n. These equations then couple different transverse modes q but leave 
the vertical modes n uncoupled. Explicitly, the required matching conditions can be 
written as 

I q5H = 91 (x’ = 0, 0 < y < ib ) ,  

4 2  = 91 (2’ = 0, 9 < y < +), 

g52 = $3 (x” = 0, i b  < y < $), 

In practice, our expansions of the velocity potential in the various regions will of 
course be limited to a finite number of terms. We could, for example, attempt to 
determine the corresponding coefficients by a least-squares method. As indicated 
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above, however, we can instead obtain a set of linear equations for the coefficients 
by integrating (4.9) over appropriate regions of the transverse coordinate y .  Roughly 
speaking, we are then simply expressing Fourier coefficients as integrals over the 
function to be expanded. 

If we now limit the order q of the transverse modes that we consider to a maximum 
value Q in tlie harbour and chamber, and to maximum values Q1, Q ,  and Q3 in the 
respective external regions, we have Q + Q1 + 2Q, + Q3 + 5 unknown coefficients anq, 
alnq, a,,,, bznq and a3,,, which should satisfy the equations 

We have here 

AO!? 

sin (xq’b/c) 
a,, = 

nq’b/c ’ 
and 

C,, = D,, = (ik)-l F,, = S,, Sqo , 

En, = G,, = 0. 

J 

(4.10) 

(4 .11)  

(4.12) 

The appearance of the factor S,, in (4 .12)  then makes all coefficients zero for n + 0, 
and the d = 0 average chamber amplitude is thus simply to = uoo(sin ka)/ka. 

By making appropriate changes in (4.10) or (4 .12) ,  we can now cover several other 
situations as well. 
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FIGURE 2. Average chamber-wave amplifications versus frequency. 

(1 ) Backward incidence 
The incident wave 7, exp (-ikz’) is in this case travelling towards the closed end of 
the absorber; this amounts to a replacement of the driving terms (4.12) by 

En, = - (ik)-l a,,, = exp (ikl’) S,,, S,, , 

C,, = D,, = Fnq = 0 .  
(4.13) 

(2) Absorbing beach 
We assume in this case forward incidence, but a situation where no waves are reflected 
back into region 2 at the far end of the absorber. This is achieved if region 2 contains 
an absorbing beach at the level of or behind the mouth of the harbour. In our 
mathematical model we put bzng = a3,,, = 0 and omit those equations in (4.10) that 
contain exp ( L- E,, Z’). 

( 3 )  Reflecting wall 

The side regions of the channel are now closed by a totally reflecting wall at 2’ = 0. 
As far as (4.10) is concerned, we put ban, = aZnq and a3,,, = 0, and again omit the 
equations containing exp ( f B,, 1’). 

Figure 2 shows the resulting average wave amplification 1 6, I on the open chamber 
for a specific geometry in model scale, for forward and backward incidence onto a 
system with open side regions as well as for the systems with an absorbing beach or 



Wave-power absorption by a n  oscillating water column 161 

5 

1501 

0 

PI 
.I 

h =  1.0m 

c = 2.0 m -0 

1 I 1 I l I I I  I I I I  

0.5 I .o 
f (W 

FIQURE 3. The influence of transverse channel modes on the average chamber-wave 
amplification for an absorber in a reflecting wall. 

a reflecting wall. In this and subsequent figures we use f = o/2a (in Hz) as the 
frequency variable. While the angular frequency w is the more convenient variable 
in the mathematical expressions, the frequency f or its inverse, the period, seems 
preferable from a physical point of view. Qualitatively, the frequency dependence of 
I &, I is much the same in all the four cases we consider, and, not unexpectedly, the 
main peak can roughly be interpreted as a quarter-wave resonance in the total length 
I' = 1 +a  of the absorber. Note also the behaviour in the region where the wavelength 
h matches the width c of the channel. 

The number of transverse modes needed to give an acceptable description of 
the wave picture in the various regions of course depends on the frequency. In  the 
frequency range covered by figure 2 we expect the transverse modes q > 1 in the 
harbour and chamber to be rather unimportant, since with the present geometry 
the matching point h = b appears a t  f = 1.77 Hz. This is indeed confirmed by the 
numerical calculations, the influence of the internal q 3 1 modes on the values of I to I 
in figure 2 being on the 1 % level or less. 

The situation is different for the external transverse modes, because in the present 
example h = c already at f = 0.88 Hz. This is demonstrated in figure 3, which shows 
I &, 1 in the reflecting-wall case for Q1 = 0, 1 and 5. We see that the external q = 1 
mode has a very noticeable effect on the wave amplification, in that it moves and 
enhances the quarter-wave and all but destroys the three-quarter-wave resonance. 
On the other hand, it then makes little difference if we increase Q1 from 1 to 5.  
Similarly, when the side regions are open we can investigate the influence of the upper 
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limits Q, and Q3 for the transverse modes at  the sides and back of the absorber. All 
told, in the frequency range we are considering, the values Q = 1 ,  Q, = Q, = Q3 = 2 
used in figure 2 and subsequent figures describe the actual situation very well. 

Let us now look a t  the low-frequency limit where no modes other than q = 0 are 
present to an appreciable degree in any part of the system, i.e. put Q = Q1 = 
Q2 = Q3 = 0. The set (4.10) is then reduced to five equations for equally many 
unknown coefficients. Using the indices + and - to indicate forward and backward 
incidence onto a system with freely accessible side regions 2, we obtain the 
average chamber amplitudes 

sin La to+ = [(l-p) coskZ’+i sinkl’lc- 
k a  ;I 

(4.14) 
sin ka 6,- = (1 -p )  exp (ikl’) - 
ka ’ 

where p = b / c  and 
5 = ( 1  -p+ [l -$p] i sin (kZ’) exp (ikZ’)}-l. (4.15) 

For the case of an absorbing beach (index b) or reflecting wall (index w)  we have just 
three unknown coefficients, and 

sin La tOb = [cos kl’ -;p exp ( - i17cZ‘)I-l - 
ka ’ 

sin ka tow = ~ [ C O S  kZ’ + ip sin kZ‘1-l - 
ka ’ 

(4.16) 

As the width ratio p approaches zero these expressions all give 6, cc [cos kl‘l-l, in 
agreement with the interpretation of the peak as a quarter-wave resonance. 

5. Admittance 
If the chamber is subjected to  a periodic excess pressure with amplitude p ,  = spyp 

the corresponding velocity potential $c and wave amplitude qc can be written 

According to (3.2), the admittance of the system is then 

sinhm,a 
2 = -iiOd,(gp)-’ I: an, , 

n-0 mn a 

where a finite number N +  1 of vertical modes has been included. 
For the other parts of the system we can use the same expressions for the velocity 

potential and wave amplitudes as in $4, except that  yo is replaced by yp. By matching 
potentials and derivatives a t  the various boundaries we can again obtain a set of linear 
equations of the type (4.10) for the unknown coefficients. We recall from $4 that in 
the limiting case d = 0 only the mode n = 0 contributes to the wave amplitude. For 
the admittance this is not the case ; nevertheless, also now an important simplification 
occurs ford = 0, viz the fact that  the different n-modes are uncoupled. In  fact, it  turns 
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out that for d = 0 the coefficients that determine the admittance can be obtained by 
using the right-hand sides 

D,, = En, = Gn, = 0 

in (4.10), rather than (4.12) or (4.13). The integrals g n  are defined in Appendix B, 

The admittance is of course not affected by the direction of incidence of the 
incoming wave; through the matching conditions we have accounted for waves 
radiated both up and down the channel. The absorbing-beach and reflecting-wall 
cases can be treated as in $4, i.e. by a change in the left-hand sides of (4.10) and a 
reduction in the number of equations. 

Instead of giving numerical examples showing the frequency dependence of the 
admittance, we consider the pressure ratio I 7rl I in a closed chamber when the system 
is subjected to an incoming wave. We shall as in 54 be concerned with model-scale 
systems, where -the effects of air compressibility are unappreciable. Figure 4 applies 
to the same geometry as in figure 2 and supports the intuitive physical picture in 
which a quarter-wave resonance in the harbour manifests itself as a pressure resonance 
in the chamber. However, in figure 4 the frequency where 1 = :A coincides with that 
where c = A ,  and we refer to figure 5 for a case where the transverse matching point 
c = A is outside the frequency range under consideration. The pressure ratio is shown 
for two finite harbour lengths I as well as for 1 = 0, and i t  is seen that for the longest 
harbour even a three-quarter-wave resonance appears within the bounds of the figure. 

As in the previous chapter we take a closer look at  the low-frequency range, where 
only the transverse mode q = 0 need be considered. We note that all z-modes other 

(B 7 ) .  

FIQURE 4. Closed-chamber pressure ratios versus frequency. 
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FIGURE 5. Closed-chamber pressure ratios for an absorber in a reflecting 
wall versus frequency for various harbour lengths. 

than n = 0 contribute solely to bhe imaginary part of the admittance. The linear 
equations at n = 0 thus determine the real part B of the admittance completely, and 
we find that, for the systems with open side regions, an absorbing beach and a 
reflecting wall, the appropriate d = 0 low-frequency expressions can be written 
respectively as 

sinka 
a B, = 2Bo{(1-p)2+p[1-~p]sin2kZ'}I~~2 ,\ 

wheref(kh) is defined in (3.5) and 5 in (4.15). 
Note also that 

(5.5) 

which is the equivalent of the relation (A 33) in Evans (1982~).  
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6. Performance 
In $54 and 5 we have indicated how the system parameters 5, and 2 can be found 

for given geometrical parameters and frequency. If we further specify the turbine 
constant C, the absorbed power can then be calculated from the formulae in $3. 

In terms of the efficiency E = w/c  = p W the optimum performance of the system 
is, according to (3.8), given by Em,, = (B,/B) 15, 12,  where B is the real part of 2 and 
B, is defined in (5.4). Figure 6 shows the optimum efficiencies for the same geometry 
as in figures 2 and 4, and we note the abrupt changes in performance at the transverse 
matching point h = c.  These discontinuities are similar to those observed by Srokosz 
(1980) for an oscillating body in an infinitely deep canal. 

We can obtain simple expressions for Em,, by using the expressions (4.14), (4.15) 
and (5.4) corresponding to Q = Q1 = Q2 = Q3 = 0. For an absorber in a reflecting wall 
or an absorbing beach the resulting optimum efficiencies are exact for all wavelengths 
larger than the channel width c, although the separate values for 6, and B depend 
on the number of transverse modes included. For the four cases that we have looked 
at, viz open side regions with forward or backward incidence, absorbing beach and 
reflecting wall, the optimum efficiencies in question are 

Em,,+ = K( 1 - p)2 + 2p[ 1 - fp] sin2 kl’} { ( 1 -P )~  + p[ 1 - tp] sin2 kZ’}-l 

= l-Emax+’ Emaxb = (2-p)-1, = 1* 

For p+O we obtain the point-absorber result Em,,+ = Em,,- = Emaxb = f, whereas 
Em,,, is always twice that value due to the presence of the reflected wave from the 
wall. As a check on the results note also that when the absorber occupies the whole 
width of the channel ( p  = 1) Em,,+ = Emaxb = Emaxw = 1, Em,,- = 0. 
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FIGURE 7. Optimum efficiencies for an absorber in a reflecting wall 

versus frequency for various harbour lengths. 

The absorbing-beach result is identical with that obtained by Evans (1982 b )  for 
a long absorber. However, the main basis for this result is the assumption that no 
waves are travelling upstream through the side regions; in Evans’ case this is then 
implicitly assumed through the use of expressions applicable to a semi-infinite duct. 
For an absorber in a channel with open side regions the boundary conditions have 
the consequence that Emax is dependent on the length of the absorber, the relevant 
parameter being sin2 kl’, where I’ = l+a. For a given width ratio 0 < ,u < 1 and 
wavelength h = 2n/k the largest and smallest values that can be obtained for Em,,+ 
by variation of I’ are, according to (6 .1) ,  

Turning now to the optimum efficiency ELax corresponding to a real turbine 
constant C,, we note that even for an absorber in a reflecting wall or an absorbing 
beach ELax depends on the separate lengths of the chamber and the harbour, 
since these lengths influence the imaginary part of the admittance. Figure 7 shows 
examples of how the frequency dependence of ELax changes as one varies the harbour 
length I but keeps all other geometrical parameters constant. For one harbour length 
we also show the efficiency E for a certain fixed value of C,. In figure 7, as in the 
subsequent numerical examples in this section, we limit ourselves to  the case of an 
absorber in a reflecting wall; in particular, figure 8 shows Ek,, for various widths 
b of an absorber without a harbour. 

A real-life wave-power station is of course subjected to waves of varying amplitude, 
direction, frequency and phase. The problem of cost optimization of such systems 
for given wave climates and power requirements is beyond the scope of the present 
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FIGURE 8. Optimum efficiencies for an absorber in a reflecting wall 
versus frequency for various absorber widths. 

5 '  

< w> 

0 

................. .._ .......... '.. .... 

I I I I I I 

5 

c(m) 

FIGURE 9. Average capture-width ratios for an absorber 
in a reflecting wall versus channel width. 
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paper. But let us at least look a t  some typical frequency averages for the power 
absorbed by a model-scale water column. I n  these examples the incident power is 
distributed according to  a Pierson-Moskowitz spectrum peaking a t  0.5 Hz. 

I n  figure 9 we keep the absorber geometry constant and vary the channel width c ; 
this is equivalent to varying the distance between the units in an infinite row of 
absorbers. When c is varied and b kept constant the relevant parameter is the 
capture-width ratio W. As far as the average W,,, and WL,, are concerned, we have 
assumed that the turbine constant is optimized, but in the case of WL,, kept real, 
a t  each frequency; the other curves correspond to  fixed and real values of C,. 
Figure 10 shows another type of frequency average. The distance between the 
absorbers is kept constant, as is the width and total length I' = 1 +a of each absorber. 
What is varied is the ratio of harbour length 1 to total length 1', and the figure shows 
the optimum average efficiencies Em,, and EL,, as well as the curves corresponding 
to the same fixed values of C, as in figure 9. 

It is clear from these figures that a lot of thought should be given to the 
specifications for any actual wave-power installation, not least because the choice of 
turbine may have a major influence on the total cost. Roughly speaking, a reduction 
in the required value of Ct means a turbine that is smaller in diameter and cheaper 
to manufacture. I n  this respect, figure 10 suggests that a long harbour and short 
chamber might give considerable savings in turbine costs as compared with a short 
harbour and correspondingly long chamber. 
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FIQURE 11.  Average chamber-wave amplification for various barrier depths. 

7. Finite barrier depth 
The calculations presented in the previous sections apply to the limiting caae of 

zero barrier depth d. For finite d we have a coupling between the various vertical 
modes n, in addition to the coupling that we have seen between the transverse 
modes q. To avoid the latter complication we shall for the present limit ourselves to 
the case of an absorber which occupies the whole width of the channel. 

By requiring that the derivative a+/ax is zero on the barrier and that 9 as well 
as a$/az is continuous under the barrier we can again obtain linear equations which 
determine the coefficients a, describing the wave motion in the chamber. If we include 
N +  1 vertical modes n these equations can be written 

5, =af l  sinhm,a, f f l  = [1-exp(-2mfla)]-', 

n = 0 , 1 ,  ..., N. 

For an incoming wave ?lo exp (iks) we have 

I cfl = eflo(d), 

(7.1) 

(7.2) sinhmfla 
5 0  = c afl 

fl-0 mfla 
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FIGURE 12. Optimum efficiencies for various barrier depths in the case 

and for the admittance calculation 

b = c.  

(7.3) 

where 2 = Z / b  = Z / c  is the admittance per unit width. The integrals enn, and g, are 
defined in Appendix B. 

Figure 11 shows an example of how the frequency dependence of the chamber 
amplitude changes as the barrier depth is increased. The real part of the admittance 
depends in a similar way on d,  with the result that the optimum efficiency Em,, 
displayed in figure 12 depends much more weakly on the barrier depth than might 
be inferred from the behaviour of I to I .  However, it is also seen from figure 12 that  
ELax, which corresponds to  a turbine air flux in phase with the driving pressure, again 
depends quite strongly on d.  

A situation equivalent to our b = c case was studied by Falclo & Sarmento (1980) 
for d = 0, and by complex-variable techniques a formal solution was obtained also 
for finite barrier depth. For d = 0 and infinite water depth h these authors find 
that the resonance point where E;,, = Em,, should appear where the ratio chamber 
length to  wavelength is a / h  = 0.21. This is in good agreement with the d = 0 results 
in figure 12 for h = 1.0 m, where where ELax = Emax a t  f = 0.82 Hz and a / h  = 0.22. 
As already discussed by Falclo & Sarmento, their criteria for optimum efficiency are, 
in turn, consistent with those obtained by Lighthill (1979) for resonant ducts. 

The more complicated case b < c and d + 0 will not be considered in detail in this 
paper. However, we have no problem deriving linear equations covering this case as 
well. A numerical solution is still possible and not unreasonably time-consuming, in 
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FIGURE 13. Optimum efficiencies for various barrier depths. 

spite of the couplings between vertical and transverse modes. As an example of such 
a calculation, figure 13 shows thc optimum efficiencies Em,, and EL,, for an absorber 
in a reflecting wall when the chamber length is the same as in figure 12, and when 
the geometry otherwise is the same as for the a = b = 1 case in figure 7. 

Generally speaking, an increase in barrier depth makes the EL,, curve narrower 
and pushes its peak towards lower frequencies. Like the other geometrical parameters 
in the system the barrier depth thus has an appreciable effect on the absorbed power 
from a given spectral distribution of incident waves. The expected wave heights will 
also influence the choice of barrier depth, since the barrier should remain submerged 
during the operation of the power station. 

8. Concluding remarks 
This work on oscillating water columns in a channel was done for the purpose of 

providing a theoretical foundation for the construction of wave-power stations 
consisting of many such units in a row. We shall later return to  the question of 
wave-power absorption by single water columns or by a few columns in a row. Also, 
we intend to report on an extensive experimental programme in this field. Suffice 
it at this point to say that there seem to be no major disagreements between theory 
and experiment. 

A major part of this work was performed as a research project at the Norwegian 
Hydrotechnical Laboratory under a contract with Kvzrner Brug A/S, made 
possible through financial support from the Department of Petroleum and Energy. 
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Appendix A. Air compressibility 
I n  calm sea the air in the chamber occupies a volume V, = abH (figure 1) and its 

pressure p equals the atmospheric pressure pa. Under operating conditions the volume 
flux of air through a turbine fulfilling the linearity condition is 

3 = C,p,, 
dt 

where C, is the turbine constant and p, = p -pa is the excess chamber pressure. The 
volume V, is here counted as positive for air flowing from the chamber to the exterior, 
and negative for air flowing in the opposite direction. 

As elsewhere in the paper we employ the complex notation where the actual 
physical quantities are the real parts of the corresponding symbolic ones. For 
p ,  = p ,  exp ( i d ) ,  V, = V, exp (iot), with p ,  = I p ,  I exp (iq5J, V, = I V, I exp (i&) the 
actual excess pressure and turbine air volume are thus pi = I p, I cos (wt + q5p) and 
Vi = I V,l cos(ot+$,). We allow for a possible phase lag between the excess 
pressure and the volume flux of air by using a complex turbine constant 
C, = 1 C, I exp (iq5c). I n  the periodic case we thus have I V, I = o-l I C, I Ip, I and 

Let us assume that the actual pressure p' = Re (p) and volume V' = Re ( V )  of the 
air in the chamber are related through the ideal-gas equation p' V "  = constant, where 
K = 1.4 or 1 for adiabatic or isothermal situations, respectively. A change d V' in the 
volume is then accompanied by a change dp' = - K(p'/ V') d V' in the pressure. I n  the 
spirit of linear wave theory, i.e. on the assumption of small changes in volume and 
pressure, we replace the ratio p'/ V' by pa/ V,. Since the resulting relation between 
volume and pressure is linear, i t  can be used for the symbolic quantities as well, so 
that 

q5" = $c + q5p -in. 

Pa dp = - K - d V 
V C  

During an infinitesimal time interval dt the volume V changes by an amount 

d V, = Ct p ,  dt 

owing to the flow through the turbine and by an amount 

dV,, = -Acd(qc) 

owing to the change in chamber volume caused by the water waves. Here ($,) is 
the time-dependent wave elevation averaged over the chamber surface area A ,  = ab. 
With d V = d V, + d V7, we use (A 2) to obtain 
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In the periodic case p ,  = p ,  exp (iot) this becomes 

A = Ct+iwA, A = -. 

For incompressible air, on the other hand, we would have 

or 

A ,  %$? = CtP,  
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In the present approximation, therefore, the air compressibility has the effect of 
replacing the actual, and possibly already complex, C, by an effective turbine 
constant A = C,+iwA. For the constant K entering the expression (A 4) for the 
correction term A,  it  seems appropriate to use the adiabatic value 1.4. 

Appendix B. Separation of the z-dependence and definition of certain 
integrals over z 

For harmonic waves described by the velocity potential 

&z, y ,  2, t )  = $@, y ,  2) exp ( i 4  

the Laplace equation V2$ = 0 can be separated by writing #(x, y ,  z )  = &x, y )  e,(z), 
where 

The eigenfunctions en( z )  and eigenvalues m, follow from the boundary conditions 

R- de (2) - ve,(z) ( z  = 0) ,  
dz 

v = d / g ,  

where the z-axis points upwards from an origin at the surface. 
Using the normalization e,(O) = 1, we have 

cos m,(z + h) 
cos m, h ’ en(z)  = 

m, tanm, h = -v, n = 0,1 ,2 ,  .. . . I  
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Here m, is real for u > 0, while mo = ik, where k is the wavenumber. For n = 0 the 
expressions (B 3) can the11 also be written 

cosh k(z  + h )  
e o ( 4  = coshkh .) 

k tanh kh = v. 

With the present definition, the normalization integral for the eigenfunctions is 

ro 

and the other integrals over z that appear in the text are 
-d 

e,,,(d) = d;' en(%) en,(%) dz 
-h 

= [2d, cos (m,, h)  cos (m,  h)]-l  

x {(m,.+rn,)-' sin [ (m, .+m,)  ( h - d ) ]  

+ (m,.-m,)-' sin [(m,,-m,) ( h - d ) ] }  

and 

}-' e g ) (  - d ) ,  
2m, h 

sin 2m, h 

sin m, ( z  + h) 
e g ) ( z )  = 

sinm,h ' J 
In the last line of (B 6) the expression (m,,-m,)-l sin [(m,,-  m,) (h-d)] should be 
replaced by h - d  when n' = n. 
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